博彩网址

朱永利

职称:副教授

基本信息

朱永利,男,湖北武汉人,副教授,硕士生导师(计算机和电子信息)。办公地点:东校区格致堂228室。

 

教师简介

       2005年考入华中科技大学电气与电子工程学院,2009年获学士学位。其后推免至国网电力科学研究院(南京)攻读免试研究生,于2012年获硕士学位。2014年入读美国田纳西大学诺克斯维尔分校(University of Tennessee, Knoxville)电气与计算机系,研究方向为电力系统稳定性及深度学习在电网动态分析中的应用,于2018年获博士学位。博士毕业后,先后在国家电网公司全球能源互联网北美研究院(硅谷)(图计算与图数据库组)及亚马逊(西雅图)(广告算法组)从事研发类工作。 随后回归学术界,先后在爱荷华州立大学(Iowa State University)及得州农工大学(Texas A&M University)担任博士后研究员,期间主要研究方向为图神经网络在电网可靠性分析中的应用,强化学习在电网恢复控制中的应用,以及电网可靠性开源软件研发。
       海外工作期间多次指导高校博硕士研究生及企业实习生开展电力AI领域的研究,部分成果发表于人工智能领域权威会议ICML, NeuIPS及ICLR。

 

教育背景

  • 2014.1-2018.8,University of Tennessee,Knoxville,Electrical Enginerring (Major)/Computer Science (Minor), 博士学位;

  • 2009.9-2012.4,国网电力科学研究院(南京),电力系统及其自动化专业,硕士学位;

  • 2005.9-2009.6,华中科技大学,电气工程及其自动化专业,学士学位;

 

研究方向

  • 人工智能在CPS韧性系统(如电网)中的应用;

  • 电网可靠性及稳定性并行计算/在线计算算法研发;

  • 智能无人系统/无人机在电网安稳控制中的应用;

 

工作经历

  • 2023.3-至今,博彩网址-博彩平台网址-最新博彩网址 ,副教授。

  • 2021.2-2023.2,Texas A&M University (得州农工大学) 电气与计算机工程系,博士后研究员;

  • 2020.9-2021.2,Iowa State University (爱荷华州立大学) 电气与计算机工程系,博士后研究员;

  • 2019.12-2020.9,Amazon (亚马逊,西雅图) 广告算法组,机器学习工程师;

  • 2018.8-2019.12,GEIRINA (国家电网公司全球能源互联网北美研究院),研发工程师;

 

讲授课程

  • CPS韧性系统(学院各专业研究生,待开设)

  • 电力人工智能 (计划开设)

 

科研经历

  作为项目骨干参与或主持的纵向及横向科研项目如下:

•“基于图计算的电力系统毫秒级状态估计与快速预想故障分析关键技术研究”. 国家电网公司科技项目,全球能源互联网北美研究院承担, 2018-2019.
• “基于图计算和集成电路仿真先进数值积分算法的暂态高速并行仿真研究”. 国家电网公司科技项目,全球能源互联网北美研究院承担, 2018-2019.
• “田纳西大学超广域弹性电网研究中心:大电网测试平台建模” (Large Test Bed Modeling of North America Power Systems for UTK CURENT). 美国国家自然科学基金 (NSF) 科研项目, 田纳西大学承担,2017-2018.
• “提升孤岛微电网稳定性的新型控制策略研究”. NEC北美实验室科研项目 (“Novel Control Techniques for Enhancement of Microgrid Stability in the Islanded Mode”. Research project for NEC Lab Co.,
Ltd.), NEC 北美实验室承担,2014.1 - 2014.12.
 

 

获奖情况

• 2020 特斯拉 (中国) 超极杯机器学习竞赛第六名(超级充电桩数据分析及预测) (领队)
• 2020 四川省电力调控中心感谢状
• 2017 亚马逊 (美国) 研究生学术论坛. 基于推特数据的醉酒人行为分析 (“Twitter Data Analysis for
Drunk Behavior”)
• 田纳西大学电气与计算机工程学院学院奖学金, 2014 - 2015
• 第五届中国全国大学生嵌入式系统设计竞赛三等奖 (作品: 基于 ZigBee 的无人值守变电站系统), 2009

 

代表性论文

代表性科研成果
• Google Scholar: //scholar.google.com/citations?user=ePlYHXMAAAAJ
   
  部分代表性成果如下:
• Yongli Zhu. Power Grid Cascading Failure Mitigation by Reinforcement Learning. “Tackling Climate Change with Machine Learning”, the 38th International Conference on Machine Learning (ICML 2021).
• Tabia Ahmad, Yongli Zhu, et al. Predicting Cascading Failures in Power Systems using Graph Convolutional Networks. “Tackling Climate Change with Machine Learning” , the 35th Conference on Neural Information Processing Systems (NeurIPS 2021).
• Nicolas Cuadrado, Roberto Gutiérrez, Yongli Zhu, Martin Takáč. MAHTM: A Multi-Agent Framework for Hierarchical Transactive Microgrids. “Tackling Climate Change with Machine Learning”, the 11th International Conference on Learning Representations (ICLR 2023) (accepted)
• Yongli Zhu, Guangyi Liu. Application of Triangle Count in Branch Contingency Screening. Int. J. Electr. Power Energy Syst., vol.135, 2022. doi: 10.1016/j.ijepes.2021.107392. (SCI)
• Yongli Zhu, Chengxi Liu, Liangzhong Yao. A Faster Estimation Method for Electromechanical Oscillation Frequencies. IEEE Trans. Power Syst., 34(4), July 2019. (SCI)
• Yongli Zhu, Chengxi Liu, Kai Sun, et al. Optimization of Battery Energy Storage to Improve Power System Oscillation Damping. IEEE Trans. Sustain. Energy, 10(3), 2019. (SCI)
• Yongli Zhu, Chengxi Liu, Bin Wang, Kai Sun. Damping Control for a Target Oscillation Mode Using Battery Energy Storage. Journal of Modern Power Systems and Clean Energy, 6(4), 2018. (SCI)
• Qianzhi Zhang, Zixiao Ma, Yongli Zhu, Zhaoyu Wang, et al. A Two-Level Simulation-Assisted Sequential Distribution System Restoration Model With Frequency Dynamics Constraints. IEEE Trans. Smart Grid, vol. 12, no. 5, Sept. 2021. (SCI)
• Yongli Zhu, Chanan Singh. End-to-End Topology-Aware Machine Learning for Power System Reliability Assessment. 17th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS 2022), United Kingdom, 12-15 June 2022, Online.
• Yongli Zhu, Chanan Singh. Topology-Aware Reliability Assessment by Graph Neural Networks. The 3rd Annual IEEE Kansas Power and Energy Conference, 2022 (KPEC 2022), USA, April 2022, Online. (Ei & IEEE)
• Yongli Zhu, Renchang Dai, Guangyi Liu. Parallel Betweenness Computation in Graph Database for Contingency Selection. 2020 IEEE Power & Energy Society General Meeting, Aug. 2020. (Ei & IEEE)
• Yongli Zhu, Lingpeng Shi, Renchang Dai, Guangyi Liu. Fast Grid Splitting Detection for N-1 Contingency Analysis by Graph Computing. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), May 2019. (Ei & IEEE)
• Yongli Zhu, Chengxi Liu, Kai Sun. Image Embedding of PMU Data for Deep Learning towards Transient Disturbance Classification, the 2nd IEEE International Conference on Energy Internet (ICEI 2018), May 2018, Beijing, China. (Ei & IEEE)
• Yongli Zhu, Kai Sun, et al. Microgrid Security Assessment and Islanding Control by Support Vector Machine. 2015 IEEE PES General Meeting, Denver, Colorado, July 2015. (Ei & IEEE)
• Yongli Zhu, Songtao Lu. Load profile disaggregation by Blind Source Separation: a Wavelets-assisted Independent Component Analysis Approach. 2014 IEEE PES General Meeting, Washington, D.C., July 2014. (Ei & IEEE)
• Yongli Zhu, Renchang Dai, et al. Power Market Price Forecasting via Deep Learning. The 44th Annual Conference of the IEEE Industrial Electronics Society (IECON), Washington, D.C., Oct. 2018. (Ei & IEEE)
• Yongli Zhu, Bin Wang, Kai Sun. Damping control for power systems using energy storage. The 29th Chinese Control And Decision Conference (CCDC), 3730-3735, May 2017. (Ei & IEEE)
• Yongli Zhu, Xiang Zhang, Renchang Dai. Power System Transient Analysis via Circuit Simulator: A Case Study of SVC. 2021 IEEE Kansas Power and Energy Conference, Apr. 2021. (Ei & IEEE).

 

学术兼职

• Session Chair, KPEC 2022. 分会场主席 (受邀).
• IEEE Journal on Emerging and Selected Topics in Circuits and Systems(SCI), 审稿人
• IEEE Transactions on Smart Grid (SCI), 审稿人
• IEEE Transactions on Power Systems (SCI), 审稿人
• IET Image Processing (SCI), 审稿人
• IET Electronics Letters (SCI), 审稿人
• IET Generation, Transmission & Distribution (SCI), 审稿人

 

写在最后

       个人研究兴趣包括但不局限于应用型人工智能技术与能源领域的结合。鼓励感兴趣的同学申报研究生,促进国家乃至全球的碳减排事业, 共同打造能源(电网)领域的"AlphaGo"和"ChatGPT". 同时作为导师角色,会结合项目需求尊重个体的科研兴趣与职业发展规划。最后,对学术学业表现良好的研究生可推荐至海外高校作短期交流或毕业后继续深造。